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1 Introduction

1.1 Background

1.1.1 Cancer

Cancer is the second leading cause of death in the United States [1]. According to the National Cancer
Institute, approximately 39.6% of men and women will be diagnosed with cancer at some point during their
lifetimes [2]. This complex disease takes many forms and has various underlying causes, contributing to its
high death rate. Current forms of treatment involve therapies such as radiation and chemotherapy, which
essentially act as a poison to kill the cancer cells causing severe side-effects for the patient. Other treatments
include surgical removal of the tumor from the patient. These treatments are often combined to ensure
complete removal of the cancer from the patient. The efficacy of these treatments is dependent on early
detection of the disease. For the majority of cancer types, diagnosing the cancer when it is still localized in
the organ of origin correlates with a greater long-term survival [3][4][5]. For this reason, there is a strong
need to develop technologies that can detect cancer at an early stage of the disease. To accomplish this, one
must have a deep understanding about the underlying biology and mechanisms of cancer.

Our bodies are comprised of over 37.2 trillion cells, and cancer can originate with a single genetically-
altered cell essentially anywhere in the body [6]. The term “cancer” encompasses a collection of diseases
characterized by uncontrollable cell division and abnormal cell invasion into surrounding tissues. The ma-
jority of cancers form stationary, solid tumors, however cancers of the blood (leukemias) typically circulate
and affect the blood, bone marrow, and lymphoid system. Additionally, tumors can be either malignant or
benign. Benign tumors do not invade surrounding tissue or spread to other parts of the body like cancerous
malignant tumors.

Cancer cells are genetically and phenotypically different from normal cells of the body, and these differ-
ences are what allow them to grow out of control and become invasive. Douglas Hanahan and Robert A.
Weinberg in “The Hallmarks of Cancer” state that there are 6 key differences that characterize all cancer
cells (Figure 1): i) stimulated self-growth ii) resistance to inhibitory signals iii) resistance to programmed
cell death (apoptosis) iv) limitless replicative potential v) induced formation of vasculature (angiogenesis)
and vi) ability to invade surrounding tissues and spread to other sites in the body (metastasis) [7].

Figure 1: The 6 Hallmarks of Cancer. Image courtesy of Hanahan et al, 2011.

These hallmark differences between cancer cells and normal cells manifest themselves at the genetic and
molecular level and serve as cancer biomarkers. Biomarkers are a measurable substance in an organism
whose presence is indicative of some phenomenon such as disease, infection, or environmental exposure[8].
The clinical management of cancer is increasingly dependent on the discovery and development of novel
biomarkers and ultrasensitive technologies to detect them at early stages when therapeutic intervention may
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still be effective [9][10]. The biomarker used for this model and study is matrix mettaloproteinase 9 (MMP9).
This enzyme is involved in the degradation and remodeling of the extracellular matrix, a fundamental role in
tumor progression. MMP9 is highly expressed in cancer cells and contributes to their ability to metastasize
(hallmark 6). Additionally, MMP9 was shown to be up-regulated across many different cancers (Figure 2).

Figure 2: Analysis of fold change in MMP9 mRNA expression in tumors versus healthy controls; compiled from On-
comine and TCGA data. H&N, head and neck; GBM, glioblastoma multiforme; COAD, colorectal adenocarcinoma.
Red dashed line indicates a fold change of 1. Image courtesy of Kwon et al, 2017.

Despite the need for sensitive diagnostic tools that are capable of detecting cancer at early stages of
the disease, current biomarker technology has limited predictive value. For instance, screening with the
blood biomarker CA-125 for ovarian cancer diagnosis does not improve patient outcome [11]. Current
diagnostic strategies such as magnetic resonance imaging, positron emission tomography, and analysis of
blood biomarkers shed by tumors are limited to the detection of masses 1cm in diameter[12][13][14]. It has
been shown that it can take up to ten years for a tumor to reach this size [13], leaving a large window of
opportunity for early diagnosis to enhance patient outcomes. The development of ultrasensitive, minimally
invasive diagnostic tools could significantly improve patient prognosis[15].

1.1.2 Nanoparticle Biosensor

Ester Kwon and her group developed an exogenously administered activity-based nanosensor (ABN) as a
minimally invasive technique for detecting tumors [15]. The ABN is designed to effectively diffuse out of
the plasma into the tumor after injection. Once concentrated in the tumor, the particle will shed a reporter
molecule that is cleaved from tumor-specific proteases. This reporter diffuses back into the blood and will
ultimately concentrate in the urine for quantification (Figure 3).

Kwon optimized the transport of the particle into tumor tissue by conjugating LyP-1 to the surface. This
substrate recognizes membrane-bound receptors on the surface of tumor cells and initiates an active transport
mechanism, allowing the ABN to diffuse into the tissue. The ABN was also optimized to recognize on-target
proteases by lengthening the MMP substrate that is also attached to the nanoparticle core. Increasing the
length of the substrate caused the off-target protease activity to decrease.
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Figure 3: Schematic of tumor detection using the nanoparticle system. The process is broken into four steps; 1)
Injection of the nanoparticle 2) Proteolytic cleavage of the MMP substrate and reporter 3) Clearance of the reporter
in the kidneys 4) Collection of the reporter in the urine. Image courtesy of Kwon, et al, 2017.

1.2 Problem Statement

The efficacy of cancer therapeutics is dependent on early detection of the disease. Current biomarker
technologies do not have the predictive value to diagnose cancer at early enough stages to have a positive
effect on patient prognosis. Current imaging and blood biomarker technologies are limited to detecting masses
with a minimum diameter of 1cm (it can take up to 10 years for a tumor to reach that size). Additionally,
current biosensor models have no way of predicting or monitoring tumor size.

Dr. Ester Kwon and team have engineered an ultra-sensitive tumor penetrating nanosensor that can
detect sub-5mm-tumors, however the model does not include a means of measuring tumor size. Here, we
attempt to modify the mathematical model of her activity-based nanosensor to incorporate a measure of
tumor size. We hypothesize that concentration of the cleavable reporter in urine will increase as tumor size
increases.

2 Methods

2.1 Lumped Model

To develop a mathematical model for the activity of the nanoparticle in a living system, Kwong et al
broke the system into a lumped model consisting of four compartments (Figure 4). The first compartment
represents the concentration of the NPs in the blood after injection. The second compartment represents the
concentration of the NPs in the tumor. The third compartment represents the concentration of the cleaved
reporter in the blood. The fourth compartment represents the concentration of reporter that accumulates in
the bladder and urine. The model also includes an additional pathway that depicts the proteolytic cleavage
that occurs within the plasma from both on and off-target enzymes. Table 1 below lists the values for the
parameters utilized in the model.

4



Figure 4: Lumped model for the in vivo pathway of the nanoparticle consisting of four main compartments. Notice
that there is an additional pathway attributed for both on and off-target proteolytic cleavage in the plasma. Image
courtesy of Kwong et al, 2015

The mathematical equations that represent each compartment of the lumped model were derived from
both the standard Michaelis-Menten kinetics equation:

Vo =
k2[Et][S]

Km + [S]

in which the conditions of quasi-steady state are assumed, and Fick’s law of diffusion:

J = −Ddϕ
dx

Variable Description Unit Value
τ constant for NP in plasma min−1 0.0462
P permeability constant for tumor m−1 2.3 ∗ 10−4

kMMP9
cat catalytic efficiency of MMP9 min−1 3.99
kbloodcat catalytic efficiency min−1 0.0659

kreportertumor rate of reporter diffusion across tumor min−1 0.09

kreporterurine rate of reporter filtration into urine min−1 0.032

kreporterMPS rate of reporter clearance by MPS min−1 0.0064
kabsorb rate of NP and reporter reabsorption min−1 2.89
KMMP9

M Km MMP9 cleavage M 2.13 ∗ 10−6

Kblood
M Km plasma cleavage M 1.0063 ∗ 10−5

Eblood
MMP9 concentration of shed proteases in blood M 7.1623 ∗ 10−8

Eblood
n.s. concentration in blood M 4 ∗ 10−6

Etumor
MMP9 concentration of proteases in tumor M 7.1624 ∗ 10−7

Table 1: Parameters

2.1.1 First Compartment: Blood

The first compartment representing the concentration of NPs in the plasma is derived from a series of
separate components including its half-life, the diffusion out of the plasma into the tumor, and its enzymatic
degradation:

dCNPplasma
= −τ∗CNPplasma

−kNP
tumor∗(CNPtumor

−CNPplasma
)−
kMMP9
cat ∗ Eblood

MMP9 ∗ CNPplasma

(KMMP9
M + CNPplasma

)
−
kbloodcat ∗ Eblood

n.s. ∗ CNPplasma

(Kblood
M + CNPplasma

)

The first portion of the equation represents the half-life of the NP which negatively affects the concen-
tration in the plasma. The second portion of the equation represents the diffusion of the NP out of the
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plasma into the tumor. It is important to note that this type of diffusion equation is typically a function of
permeability, surface area, and volume (discussed later in the report), however, it has been replaced by the
term kNP

tumor. The final portion of this equation depicts the enzymatic degradation from both specific(MMP9)
and non-specific proteases in the blood.

2.1.2 Second Compartment: Tumor Bed

The second compartment in the lumped model is comprised of two differential equations describing the
concentration of NPs in the tumor and the concentration of reporter in the tumor. Both equations are
constructed using a combination of Fick’s Law of Diffusion and the Michaelis-Menten equation for enzyme
kinetics. The first equation in this compartment assumes that only two dynamic changes govern the change
in NP concentration in the tumor: NP diffusion and NP degradation:

dCNPtumor
= kNP

tumor ∗ (CNPplasma
− CNPtumor

) − kMMP9
cat ∗ Etumor

MMP9 ∗ CNPtumor

(KMMP9
M + CNPtumor

)

The first term in this equation represents the diffusion of the NP from the blood into the tumor bed, and
the second term of the equation captures the degradation of the NP due to MMP9 enzyme activity.

The second equation in the tumor compartment describes the concentration of reporter accumulating in
the tumor.

dCRtumor =
kMMP9
cat ∗ Etumor

MMP9 ∗ CNPtumor

(KMMP9
M + CNPtumor )

− kreportertumor ∗ (CRtumor )

The first term in this second equation is the complement of the second term in the first equation, capturing
the enzymatic activity of MMP9 on the NP to create free reporter in the tumor. The second term in this
second equation represents the diffusion of the reporter out of the tumor and into the surrounding blood.
The reporter in the plasma,CRplasma, is significantly diluted and cleared rapidly, therefore for simplicity it
has been ignored in the second expression of the equation.

2.1.3 Third Compartment: Blood

The third compartment models the concentration of reporter in the plasma; it is constructed from five terms:
(i) diffusion of the reporter from the tumor into the plasma, (ii) enzymatic activity of MMP9 in the blood,
(iii) enzymatic activity of non-specific proteases in the blood, (iv) clearance of the reporter from kidney
filtration and MPS (mononuclear phagocyte system), and (v) absorption of reporter (e.g. from renal tubes).

dCRplasma
= kreportertumor ∗ CRtumor +

kMMP9
cat ∗ Eblood

MMP9 ∗ CNPplasma

(KMMP9
M + CNPplasma

)
+
kbloodcat ∗ Eblood

n.s. ∗ CNPplasma

(Kblood
M + CNPplasma

)

−(kreporterurine + kreporterMPS ) ∗ (CRplasma
) − kabsorb ∗ (CRplasma

)

2.1.4 Fourth Compartment: Bladder

The fourth and final compartment of the model describes the concentration of the reporter in the urine, and
it is governed by a single rate equation:

dCRurine = kreporterurine ∗ CRplasma

2.2 Numerical Solution

Recalling equations (1) and (2), we have placed our focus on this kNP
tumor term, the rate of nanoparticle

diffusion across tumor vessels. In [6], this term is defined as

kNP
tumor =

P ∗ Stumor

Vtumor

where Stumor and Vtumor are the surface area and volume of the tumor, respectively. Assuming a spherical-
shaped tumor, we can then take Stumor and Vtumor to be
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Stumor = 4 ∗ π ∗ r2

Vtumor =
4

3
∗ π ∗ r3

Thus, our expression for kNP
tumor simplifies to

kNP
tumor =

3 ∗ P
r

This constitutes our primary modification to the mathematical model utilized by Kwon et al. By tun-
ing this parameter based on the radii of tumors of various sizes, we can see the effect of tumor size on
concentration of reporter in urine.

The numerical solution to our system of five ODEs was solved computationally using MATLAB and
its built-in ODE23 solver. The numerical solution utilizes the ODEs exactly as outlined in [6], with our
modification for kNP

tumor.

Variable Description Initial Conditions [M]
dCNPplasma

Nanoparticle in Plasma 2.5 ∗ 10−6
dCNPtumor Nanoparticle in Tumor 0
dCRtumor

Reporter in Tumor 0
dCRplasma

Reporter in Plasma 0
dCRurine Reporter in Urine 0

Table 2: Initial Conditions

Table 2 lists the initial conditions utilized in the ODE23 solver. There is a small amount of nanoparticle
initially injected into the bloodstream. All other concentrations are initially at zero. Absolute tolerance and
relative tolerance in the mathematical model were set to 1 ∗ 10−20.

2.3 Analytical Solution

According to Dr. Gert Cauwenberghs no method exists to analytically solve these equations, “except if you’re
a math wizz of the caliber of Laplace himself and make a breakthrough in solving general nonlinear ODEs...”
However, we can look at these ODEs in various domains, which will allow us to simplify the equations into
forms more amenable to analytical manipulation. The complete list of equations governing our model is
listed below:

1.

dCNPplasma
= −τ ∗ CNPplasma

− kNP
tumor ∗ (CNPtumor

− CNPplasma
) −

kMMP9
cat ∗ Eblood

MMP9 ∗ CNPplasma

(KMMP9
M + CNPplasma

)

−
kbloodcat ∗ Eblood

n.s. ∗ CNPplasma

(Kblood
M + CNPplasma

)

2.

dCNPtumor = kNP
tumor ∗ (CNPplasma

− CNPtumor ) − kMMP9
cat ∗ Etumor

MMP9 ∗ CNPtumor

(KMMP9
M + CNPtumor )

3.

dCRtumor =
kMMP9
cat ∗ Etumor

MMP9 ∗ CNPtumor

(KMMP9
M + CNPtumor )

− kreportertumor ∗ (CRtumor )

7



4.

dCRplasma
= kreportertumor ∗ CRtumor

+
kMMP9
cat ∗ Eblood

MMP9 ∗ CNPplasma

(KMMP9
M + CNPplasma

)
+
kbloodcat ∗ Eblood

n.s. ∗ CNPplasma

(Kblood
M + CNPplasma

)

−(kreporterurine + kreporterMPS ) ∗ (CRplasma
) − kabsorb ∗ (CRplasma

)

5.
dCRurine

= kbladderurine ∗ CRplasma

We first observe that equations (1) and (2) are coupled. Our method of choice to uncouple the two variables,
CNPplasma and CNPtumor, would be Laplace. However, the variables in the denominator of the fractions make
these equations unamenable to the Laplace method. If we look at these equations in domains defined by
the rate constants in the denominators of these terms (Figure 5), we can simplify the equations to a form
that is solvable using Laplace. If we assume that the conentration of nanoparticle in the blood ( CNPplasma)
is much smaller than the Michaelis Menten contant for MMP9 (KM

MMP9), and that the concentration of
nanopartible in the tumro ( CNPtumor) is much smaller than KM

MMP9 we can cancel out the CNPplasma term
in the denominator of equations (1) and (4) and the CNPtumor term in the denominator of equations (2) and
(3). This restricts our analysis to the domain highlighted below in Figure 5,

0 KMMP9
m Kblood

M

[NPs] in Plasma

0

KMMP9
m

[N
P

s]
 in

 T
um

or

Domains of the Approximation Model

Figure 5: Equations 1 and 2 separated into domains based on the rate constants KMMMP9 and KMblood

After making these assumptions our equations simplify to the following forms below. Biologically, the
concentration of nanoparticle in the blood and plasma is close to the KMMMP9 value, therefore to complete
our model, our next step was to make similar assumptions to solve for the two subsequent domains at which
the KM

MMP9 < CNPplasma < KM
blood and CNPtumor > KM

blood. However, our analytical results for the first
domain (see Results section) failed to give us conclusive evidence that our assumptions logically modeled
any biologically relevant characteristics. Therefore, we decided to disregard our analytical methods and to
focus on the numerical solutions.

1.

dCNPplasma
= −τ ∗ CNPplasma

− kNP
tumor ∗ (CNPtumor

− CNPplasma
) −

kMMP9
cat ∗ Eblood

MMP9 ∗ CNPplasma

KMMP9
M

−
kbloodcat ∗ Eblood

n.s. ∗ CNPplasma

Kblood
M

2.

dCNPtumor
= kNP

tumor ∗ (CNPplasma
− CNPtumor

) − kMMP9
cat ∗ Etumor

MMP9 ∗ CNPtumor

KMMP9
M

3.

dCRtumor
=
kMMP9
cat ∗ Etumor

MMP9 ∗ CNPtumor

KMMP9
M

− kreportertumor ∗ (CRtumor
)
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4.

dCRplasma
= kreportertumor ∗ CRtumor

+
kMMP9
cat ∗ Eblood

MMP9 ∗ CNPplasma

KMMP9
M

+
kbloodcat ∗ Eblood

n.s. ∗ CNPplasma

Kblood
M

−(kreporterurine + kreporterMPS ) ∗ (CRplasma
) − kabsorb ∗ (CRplasma

)

5.
dCRurine

= kbladderurine ∗ CRplasma

These 5 equations are now easier to work with, allowing us to use the Laplace method to arrive at an
analytical solution for our model. Laplace transform was performed on the coupled equations (1) and (2).
The resulting equations are shown below.

Ca = −τ ∗ −kNP
tumor −

(
kMMP9
cat ∗ Eblood

MMP9

kMMP9
M

)
−
(
kbloodcat ∗ Eblood

n.s.

kbloodM

)
Cb = KNP

tumor −
kMMP9
cat ∗ Etumor

MMP9

KMMP9
M

A(s) =
aos+ Cbao

s2 + Cbs− (Ca + CaCbC1)

B(s) =
kNP
tumor ∗ ao

s2 + (Cb − Ca)s− (CaCb + C1)

After we took into account the permeability, volume, and surface area of the tumor by replacing the NP
rate of diffusion constant, we decided to explore additional parameters that may be influenced by tumor
size. The original equations only considered the volume and surface area of the tumor in relation to the
diffusion of NP into the tissue. Logically, we expect that the concentration of reporter that diffuses out of
the tumor is also dependent on its size. Thus, we substituted the same equation (3*P/r) with the reporter
rate of diffusion constant in equations (3) and (4).

3 Results

3.1 Numerical Solution

We ran our mathematical model over a range of tumor radii ( 0.001mm - 5mm) and plotted the resulting
reporter concentration in urine over time, seen below in Figure 6.

Figure 6: Reporter Concentration in Urine Over Time.
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The model indicates that with increasing tumor radius, the reporter concentration in urine decreases.
We then plotted the steady state concentration of reporter in urine against radius, which confirms this
phenomenon.

Figure 7: Reporter Concentration in Urine Versus Radius.

This is contrary to our initial hypothesis that the amount of reporter in urine would increase with
increasing tumor radius. One possible biological explanation for this phenomenon involves the surface area
to volume ratio in cells. As a cell (tumor in this case) grows, its surface area does not increase linearly
compared to its volume. The volume increases much more rapidly than the surface area. At significantly
large sizes, the cell will reach a point where substances cannot enter or leave the cell in a sufficient amount
of time. Thus at large sizes, the concentration of reporter leaving the tumor and entering the blood and
urine assymptotically approaches a constant value.
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(a) Nanoparticle in Blood.

(b) Nanoparticle in Tumor. (c) Reporter in Tumor.

(d) Reporter in Blood.

Figure 8: Nanoparticle and Reporter Concentrations in Blood and Tumor.

Figure 8 shows the numerical solutions for the remaining set of ODEs, using various radii values. These
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results further contribute to the phenomenon described above. At all radii there is an initial concentration
of nanoparticle in the blood. The nanoparticle diffuses into the tumor, arriving at a significantly higher
concentration in smaller radii than in larger radii, possibly due to the surface area-to-volume ratio described
earlier. This consequently leads to the levels of reporter seen in the tumor and the blood, leading to the
final reporter concentration in urine seen in Figure 6 and Figure 7.

After observing that the concentration of reporter in the urine is inversely proportional to tumor size,
we decided to alter an additional parameter, the rate constant for the diffusion of the reporter out of the
tumor (kreportertumor ). Loginally, one would expect the tumor size to affect the rate at wich the reporter diffuses
out of the tumor. Because this term is analogous to kNP

tumor (the rate at which the nanoparticle diffuses into
the tumor), the two terms now have equivalent definitions.

kNP
tumor =

3 ∗ P
r

= kreportertumor

This adjustment caused the relative concentration of reporter in the urine to increase with radius size (Figure
9). However, we noticed that when the radius drops below 1mm, the model fails to capture the same trend.

Figure 9: Updated model for the concentration of reporter in the urine taking into account additional parameters
affected by tumor size.

Thus, we decided to consider our model only with tumors that have a radius larger than 1mm (Figure
10). After filtering out these limitations from our data set, the model becomes biologically significant; as
the radius of the tumor shrinks, there is less reporter collected in the urine. Biologically, a smaller tumor
will lessen the amount of NP that can successfully diffuse into the tissue ultimately limiting the amount of
reporter that is cleaved and filtered into the urine.
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Figure 10: Updated model for the concentration of reporter in the urine while considering additional parameters
affected by tumor size.

3.2 Analytical Solution

After making the assumption that our concentration of NP in the blood and tumor was low in relation to
the Km of the tumor-associated MMP9, we were able to simplify the system of equations allowing us to
solve it by hand. We graphed the first compartment of the Laplace approximation which was representative
of a dampened sinusoidal function. Upon further observation, we realized that each subsequent peak of the
function exponentially decreased. After overlaying the original ODE for the blood compartment, we saw
that the dampened sine wave captured the general trend of the original ODEs (Figure 11).

Figure 11: Laplace Approximation of of the first compartment in the lumped model, representing the concentration
of NPs over time. The original ODE model was superimposed over the plot for comparison. Graph created using
MATLAB for students.

3.3 Summary

In summary, we modified a pre-exsting mathematical model [16] to predict tumor size based upon the
concentration of a cleavable reporter found in the urine. We modified two rate constants that govern the
diffusion of NP into the tumor and the diffusion of reporter out of the tumor. Our initial attempts at
arriving at an analytical solution were not biologically significant. For these reasons, we focused on solving
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our model of ODEs with numerical methods. This produced a model which supported our hypothesis that
the concentration of reporter in the urine is dependent on tumor size. Our solution proved biologically
significant for tumors with a radius larger than 1mm; otherwise the results deviate from the exptected trend.

Previous studies focused solely on tumor detection rather than quantification [15][16]. Our model provides
a novel approach in correlating reporter concentration in the urine and tumor size for use as an early detection
and diagnostic tool. Alternative methods for detecting tumors include various screening protocols which often
result in false-positive and false-negative results [18]. Our adapted model provides clinical implications as a
more accurate tumor screening protocol in early cancer detection.

4 Future Work

We must consider several limitations to our current model. First, our analytical approximation only reflects
low concentrations of NPs in the blood and tumor with respect to the Km of MMP9 in the tumors. Realisti-
cally, the concentration of NP in the blood and tumor is close to the Km of MMP9 [15], so we need to adapt
our approximation to also include a domain that extends into the region at which our NP concentration is
close to the Km of MMP9 in the tumor. Our second limitation arises from the possibility that additional
rate constants may be dependent on the tumor size. Our numerical model only takes into accound tumor
size affects on the rate constant associated with the diffusion of NPs into the tumor and the rate of reporter
diffusion out of the tumor. The third limitation includes our inablilty to accurately model the expected
behavior of tumors smaller than 1mm.

Taking these limitations into account, our future directions include determining all of the variables that
are dependent on tumor size and incorporating these into the model. This would improve the accuracy of our
current numerical solution. In order to produce a more accurate analytical model, we need to incorporate
additional domains such as when the concentration of NPs in the blood is close to the Km of the MMP9 in
the tumors. Finally, given the observation that MMP9 is expressed at varying levels across different cancer
types, we would like to determine if the model can be used to diagnose tumor type based on MMP9 activity.
We would approach this by using known expression levels of the enzyme (Figure 2) and use our model to
calculate expected reporter output in the urine based on cancer type.
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5 Appendix

5.1 Matlab Code: Solving ODEs

function [t,Ru,Np,Nt,Rt,Rp]=rr(r)

% INPUTS: r - tumor size (mm)

% look in model() below for ENZYME FOR E_MMP9_TUMOR

%Original description of model from Kwong et al., PNAS (2015), 112(41):12627.

%Constants taken from Kwong et al., unless noted

% Calls the ODE function below over 200 minutes with the initial

% concentration in the blood of 2.5 uM and 0 uM everywhere else

options = odeset(’AbsTol’,1e-20,’RelTol’,1e-20);

%[t,y] = ode15s(@(t,y) model(t,y),0:200, [2.5e-6, 0, 0,0, 0.001],options);

[t,y] = ode23(@(t,y) model(t,y,r),0:200, [2.5e-6, 0, 0,0, 0],options);

%Tumor bearing values from ODE

Np=y(:,1); %Nanoparticle in plasma

Nt=y(:,2); %Nanoparticle in tumor

Rt=y(:,3); %Reporter in tumor

Rp=y(:,4); %Reporter in plasma

Ru=y(:,5); %Reporter in urine

function dydt = model(t,y,r)

%clearing constants

mps_np = 4.62e-02; %m^-1 [[k_MPS]] . Reflect clearance rate from Kwon/Dudani et al.

mps_r = 0.0064; %m^-1 Reporter clearance

k_np_filter = 1.66e-05; %m^-1 Urinary filtration of NP

k_r_filter = 0.032; %m^-1 Urinary filtration of reporter

k_absorb = 2.89; % [M]/min Fit to account for reporter loss.

%permeability constants

%p_np_tissue = 1.4e-04; %m^-1 Transport of NP into tumor. 1.18 term from improved accumulation (Fig. 2, %Kwon/Dudani et al.).

p_r_tissue = 0.09; %m^-1 Transport of reporter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K VALUE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p_np_tissue = 3 * 2.3e-4 / r;

%%%PLASMA

%plasma enzyme kinetic constants

k_cat_bckg = 0.0659/29.5; % [1/min] Plasma cleavage Kcat. 29.5 term from decreased thrombin cleavage

k_m_bckg = 1.0063e-05; % [M] Plasma cleavage Km

%TUMOR

%tumor enzyme kinetic constants

k_cat = 0.5*3.99; % [1/min] MMP9 cleavage kcat. 3.99 term from increased MMP9 cleavage (Fig. 2, Kwon/Dudani et al.).

k_m = 2.13e-06; % [M] MMP9 cleavage Km

%enzymes

e_nonspecific = 4e-6; % [M]

e_plasma = 7.1623e-8;% [M] Plasma = 1/10th [Tissue], see Hori et al., STM (2011), 3(109):109.

e_tissue = 7.1624e-7; % [M] %% ORIGINAL VALUE FOR e_tissue (need to

%e_tissue = 0;

% write a function) - applies to 5mm

%%%%State Conditions

C_np_plasma = y(1);

C_np_tissue = y(2);

C_r_tissue = y(3);

C_r_plasma = y(4);

C_r_urine = y(5);
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%Nanoparticle concentration in plasma: function of circulation time, clearance into

%tumor, cleaving due to free, nonspecific proteases, and cleaving due to secreted

%enzymes from tumor

dC_np_plasmadt = -(mps_np+k_np_filter)*C_np_plasma - (p_np_tissue*(C_np_plasma-C_np_tissue))-

(k_cat_bckg*e_nonspecific*C_np_plasma)/(k_m_bckg+C_np_plasma) - (k_cat*e_plasma*C_np_plasma)/(k_m+C_np_plasma);

%Nanoparticle concentration in tissue: function of clearance into

%tumor and cleaving due to secreted enzymes

dC_np_tissuedt = (p_np_tissue*(C_np_plasma-C_np_tissue))- (k_cat*e_tissue*C_np_tissue)/(k_m+C_np_tissue);

%Reporter concentration in tissue: function of cleaving of nps and clearance into

%blood

dC_r_tissuedt =(k_cat*e_tissue*C_np_tissue)/(k_m+C_np_tissue) - (p_r_tissue*(C_r_tissue));

%Reporter concentration in plasma: function of clearance into blood from

%tissue, natural decay, and cleavage in blood of np, and clearance into

%urine

dC_r_plasmadt = (p_r_tissue*(C_r_tissue)) - (k_r_filter+mps_r+k_absorb)*C_r_plasma +

(k_cat_bckg*e_nonspecific*C_np_plasma)/(k_m_bckg+C_np_plasma) + (k_cat*e_plasma*C_np_plasma)/(k_m+C_np_plasma);

%reporter concentration in urine: function of clearance into urine from

%blood

dC_r_urinedt = k_r_filter*(C_r_plasma);

dydt = [dC_np_plasmadt; dC_np_tissuedt; dC_r_tissuedt; dC_r_plasmadt; dC_r_urinedt];

return

5.2 Matlab Code: Utilizing ODE Solver and Plotting

[t,Ru1,Np1,Nt1,Rt1,Rp1] = rr(5);

[t2,Ru2,Np2,Nt2,Rt2,Rp2] = rr(2);

[t3,Ru3,Np3,Nt3,Rt3,Rp3] = rr(1);

[t4,Ru4,Np4,Nt4,Rt4,Rp4] = rr(0.1);

[t5,Ru5,Np5,Nt5,Rt5,Rp5] = rr(0.001);

figure

plot(t,Ru1,’y’)

hold on

plot(t2,Ru2,’r’)

plot(t3,Ru3,’g’)

plot(t4,Ru4,’b’)

plot(t5,Ru5,’k’)

xlabel(’t (s)’)

ylabel(’Concentration [M]’)

legend(’r=5mm’,’r=2mm’,’r=1mm’,’r=0.1mm’,’r=0.001mm’,’Location’,’Southeast’)

title(’Reporter Concentration in Urine vs Time’)

figure

plot(t,Np1,’y’)

hold on

plot(t2,Np2,’r’)

plot(t3,Np3,’g’)

plot(t4,Np4,’b’)

plot(t5,Np5,’k’)

xlabel(’t (s)’)

ylabel(’Concentration [M]’)

legend(’r=5mm’,’r=2mm’,’r=1mm’,’r=0.1mm’,’r=0.001mm’,’Location’,’Southeast’)

title(’Nanoparticle in Blood vs Time’)

figure

plot(t,Nt1,’y’)

hold on

plot(t2,Nt2,’r’)

plot(t3,Nt3,’g’)

plot(t4,Nt4,’b’)

plot(t5,Nt5,’k’)
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xlabel(’t (s)’)

ylabel(’Concentration [M]’)

legend(’r=5mm’,’r=2mm’,’r=1mm’,’r=0.1mm’,’r=0.001mm’,’Location’,’Southeast’)

title(’Nanoparticle in Tumor vs Time’)

figure

plot(t,Rt1,’y’)

hold on

plot(t2,Rt2,’r’)

plot(t3,Rt3,’g’)

plot(t4,Rt4,’b’)

plot(t5,Rt5,’k’)

xlabel(’t (s)’)

ylabel(’Concentration [M]’)

legend(’r=5mm’,’r=2mm’,’r=1mm’,’r=0.1mm’,’r=0.001mm’,’Location’,’Southeast’)

title(’Reporter in Tumor vs Time’)

figure

plot(t,Rp1,’y’)

hold on

plot(t2,Rp2,’r’)

plot(t3,Rp3,’g’)

plot(t4,Rp4,’b’)

plot(t5,Rp5,’k’)

xlabel(’t (s)’)

ylabel(’Concentration [M]’)

legend(’r=5mm’,’r=2mm’,’r=1mm’,’r=0.1mm’,’r=0.001mm’,’Location’,’Southeast’)

title(’Reporter in Blood vs Time’)
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